Center for International Blood and Marrow Transplant Research – Trends in Use of Haploidentical Transplantation

A research collaboration between the National Marrow Donor Program (NMDP)/Be The Match and the Medical College of Wisconsin

Number of First Allogeneic HCTs in the US By Year

& MARROW TRANSPLANT RESEARCH

CIBMTR, unpublished data ²

Numbers of Allogeneic HCTs in the US By Year and Donor Type

Numbers of Allogeneic HCTs in the US By Year and Donor Type

Distribution of Graft Sources

"Alternative Donor" Transplants in the US by Year and Graft Type

Distribution of Alternative Graft Sources 2010 2013 N=1646 N=1825 22% 25% 41% 43% Mism unrelated Haploident Single Cord Double Cord 13% 20% 14% 22%

Umbilical Cord Blood & Haploidentical Transplants in the US by Year & HLA Match

Numbers of Allogeneic HCTs in US Caucasians By Year and Donor type

Numbers of Alternative Donor HCTs in US Caucasians By Year and Donor type

Numbers of Allogeneic HCTs in African-Americans By Year and Donor type

Numbers of Alternative Donor HCTs in African-Americans By Year & Donor type

Distribution of Graft Sources – 2013

Numbers of Allogeneic HCTs by Age, Year and Donor type

Numbers of Allogeneic HCTs in Children by Year and Donor type

Numbers of Allogeneic HCTs in Children by Year and Donor type

Numbers of Allogeneic HCTs in Adults by Year and Donor type

HLA-haploidentical BMT circa 1990

Probability of event-free survival in 66 patients who received transplantation in remission and 38 patients who received transplantation in relapse.

Aversa F et al. JCO 2005;23:3447-3454

Cumulative incidence of leukemia relapse at 2 years for patients with acute lymphoblastic leukemia (ALL; A) or acute myeloid leukemia (AML; B) who were in either hematologic remission (CR; solid lines) or relapse (REL;

Aversa F et al. JCO 2005;23:3447-3454

Cumulative incidence of transplant-related deaths at 2 years for patients with acute lymphoblastic leukemia (ALL; A) or acute myeloid leukemia (AML; B) who were in either hematologic remission (solid lines) or relapse (dotted lines) at transplantation.

Aversa F et al. JCO 2005;23:3447-3454

©2005 by American Society of Clinical Oncology

Cyclophosphamide-induced tolerance

PT/Cy decreases GVHD after haploidentical HCT

Only recipients of haplo grafts got PT/Cy

Haploidentical versus double cord HCT after reduced intensity conditioning

BMT CTN 0603 (haplo) and BMT CTN 0604 (double cord)

- Parallel phase II trials (n=50/trial) of alternative donor stem cell transplantation after fludarabine/200 cGy TBI-based conditioning
- Acute leukemia in CR, lymphoma
- Hypothesis: Survival at six months is >60% (CIBMTR benchmark for unrelated HCT)
- Trials conducted at 16 or 17 centers each, completed within 18 months

Patient Characteristics

	CTN 0604 dUCB (N=50)	CTN 0603 HaploBM (N=50)
Median age (range)	58 (16-69)	48 (17-70)
Primary disease ALL AML Other leukemia Lymphoma	12% 58% 2% 28%	12% 44% 6% 38%

Treatment Regimens

Graft-versus-host disease

BMT CTN 0603/0604 Non-relapse mortality and relapse

BMT CTN 0603/0604: Survival

The results of BMT CTN 0603 and 0604 establish which of the following?

- A. Non-relapse mortality is higher after cord blood than after haplo HCT
- B. Relapse is higher after haplo than after cord blood HCT
- C. Progression-free survival after cord blood or haploHCT is not significantly different
- D. All of the above
- E. None of the above

Answer: "E" (none of the above). Results from parallel phase II trials cannot be compared statistically

The results of BMT CTN 0603 and 0604 provide equipoise for a randomized phase III clinical trial with progression-free survival as the primary endpoint

BMT CTN 1101 Hypothesis: Two year PFS is similar after related haplo-BM donor transplantation or after dUCB transplantation.

BMT CTN 1101: Study Endpoints

<u>Primary</u>

• Progression-free survival at 2 yrs

<u>Secondary</u>

- Engraftment
- GVHD
- Relapse
- TRM
- Quality of Life
- Cost Effectiveness
- Immune reconstitution (planned)

Sample size: n=410 patients over 4 years (approximately 8/month)

BMT CTN 1101 Schema

BMT CTN 1101 Ancillary and co-accruing studies

- Cost-effectiveness analysis (R01-HL116291, PI: Scott Ramsey)
- Easy to read informed consent (ETRIC; BMT CTN 1205)
- PBMCs collected (pre-BMT, d28, d56, d180, d365) and stored for analysis of immune reconstitution

BMT CTN 1101 *Eligibility*

- Age 18-70
- Diagnoses:
 - Acute leukemia, not good risk, in CR
 - Relapsed, chemosensitive Hodgkin, large cell, or mantle cell lymphoma (not eligible for autoSCT)
 - Follicular or marginal zone lymphoma, relapsed after at least two prior regimens
- No matched sibs and BOTH GRAFT SOURCES AVAILABLE

BMT CTN 1101: Accrual (as of 9/14/14)

- Trial opened June 19, 2012
- 35 centers activated
- 5 centers pending activation
- German cooperative group DKMS joining in early 2015
- 114 patients accrued; total target is 410

1101 Will Not Answer All Questions

- Restricted to reduced intensity conditioning in adults
- Diverse diseases with little power to discern disease-specific efficacy differences
- Comparison only to double cord transplants

GS14-01 Comparison of Haplo and HLA-Matched Unrelated Donor HCT in AML

- 1982 MUDs; 192 haplos
- AML, all stages
- Age 21-70 years
- 2008-2012, US and a single Italian center
- Post-tx Cy for GVHD prophylaxis in haplos
- Variety of GVHD prophylaxis regimens in unrelated donor HCTs
- Primary outcome: 2 year survival (all surviving patients censored at 2 years)

Patient Characteristics - Myeloablative

	Haplo (N=104)	Unrelated (N=1245)		
Centers	7	101		
Median age	47 y	47 y	NS	
Sorror Index 0 1 2 3 Unknown	33% 24% 11% 4% 29%	32% 23% 23% 22% <1%	<.001	
Disease status CR1 CR2+ Not in CR	46% 20% 34%	55% 20% 25%	NS	
Year of HCT 2009 2010 2011 2012	11% 13% 35% 41%	23% 24% 29% 25%	<.001	42

Patient Characteristics – Reduced Intensity

	Haplo (N=104)	Unrelated (N=1245)		
Centers	17	82		
Median age	55 y	62 y	<.001	
Sorror Index 0 1 2 3	27% 25% 17% 31%	30% 23% 21% 27%	<ns< td=""><td></td></ns<>	
Disease status CR1 CR2+ Not in CR	49% 35% 16%	61% 17% 22%	NS	
Year of HCT 2008 2009 2010 2011 2012	13% 20% 22% 20% 25%	16% 18% 21% 23% 22%	NS	43

Reduced-intensity Conditioning

Myeloablative Conditioning

What Do We Know?

- Haploidentical HCT can be performed with low GVHD and low early TRM and acceptable 2-3 year overall mortality
- Haploidentical HCT is increasingly used, predominantly for patients who do not have an HLA-matched adult donor

What Don't We Know?

- The long-term outcome of haploidentical HCT, particularly long-term disease control
- Differences in efficacy by specific blood cancer
- Outcomes in children or non-malignant disease
- Optimal graft type (PB or BM) or preparative regimen
- Relative efficacy compared to other donor sources (all studies to date underpowered to detect 10-15% differences in outcome)

Conclusions

- Haploidentical HCT is a valid option in patients without an HLA-identical adult donors but there are insufficient data to recommend it over umbilical cord blood or HLA-mismatched unrelated donor HCTs
- Given the level of uncertainty regarding the optimal "alternative donor", participation in clinical trials in should be encouraged

What's Missing? Other Types of Donors

