Stem cell therapies
For Sickle Cell Disease

Mark Walters

UCSF Benioff Children’s Hospital
Oakland

“additional research is still needed that addresses the potential risks of this therapy (e.g., failure of engraftment and chronic graft-versus-host disease) before HCT can become a widely used therapy”

HCT in SCD: indications and management recommendations from an international expert panel

Young patients with symptomatic SCD who have an HLA-matched sibling donor should be transplanted as early as possible, preferably at pre-school age.

Unmanipulated BM or UCB (whenever available) from matched sibling donors are the recommended stem cell source.

BMT for SCD (N=59)

Median follow-up - 5.8 years (range, 1.4 – 12.4)

- Survival: 93%
- Event-free survival: 85%
- Cumulative incidence of graft rejection: 9%

Event = death, graft rejection, or disease recurrence.
# Summary of HLA-ID sib HCT for SCD

<table>
<thead>
<tr>
<th>Center</th>
<th>Regimen</th>
<th>n</th>
<th>Age range (years)</th>
<th>Death (mos)</th>
<th>GvHD</th>
<th>Follow up (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rome</td>
<td>BU14 mg/kg, CY 200 mg/kg/rATG 10 mg/kg, ± Flu 150 mg/m²</td>
<td>40</td>
<td>2-17</td>
<td>3 (2.5, 6, 15)</td>
<td>17.5% acute, 5% chronic</td>
<td>1 - 10</td>
</tr>
<tr>
<td>Brussels</td>
<td>BU 13-18 mg/kg, CY 200 mg/kg, ± rATG (10 – 20 mg/kg), ± HU</td>
<td>50</td>
<td>1.7 – 15.3</td>
<td>2 (0.5, 6.6 yrs)</td>
<td>20.5% acute, 20% chronic</td>
<td>0.4 – 21.3</td>
</tr>
<tr>
<td>NYC</td>
<td>BU 12.8 – 16 mg/kg, Flu 180 mg/m², Alem 54 mg/m²</td>
<td>18</td>
<td>2.3 – 20.2</td>
<td>none</td>
<td>17% acute, 11% chronic</td>
<td>0.4 – 7.5</td>
</tr>
<tr>
<td>Mississippi</td>
<td>BU 14 mg/kg, CY 200 mg/kg, ATG 90 mg/kg</td>
<td>10</td>
<td>2.8 – 16.3</td>
<td>1</td>
<td>40% acute, 10% chronic ext</td>
<td>2.9 – 9.9</td>
</tr>
<tr>
<td>Atlanta</td>
<td>BU 14 mg/kg, CY 200 mg/kg, ATG 90 mg/kg</td>
<td>27</td>
<td>3.3 – 17.4</td>
<td>1 (3)</td>
<td>12% acute, 1 death from chronic GVHD</td>
<td>0.1 - 10</td>
</tr>
<tr>
<td>Pavia</td>
<td>BU 16 mg/kg, TT 10 mg/kg, Flu 160 mg/m² or Treo 14 gm/m², TT 10 mg/kg, Flu 160 mg/m², ATG</td>
<td>30</td>
<td>1.7 – 18.8</td>
<td>none</td>
<td>7% Gr I-II aGVHD, 7% cGVHD in BU group, none in treo group</td>
<td>0.5 – 14</td>
</tr>
</tbody>
</table>
Survival summary

• 195 pediatric HLA-ID sibling allograft recipients treated at 7 US and European centers
• 188/195 survive after HCT – 96%
• 180/195 survive free of SCD – 92%
• At last follow-up, 3 of 180 survivors were receiving IST for cGVHD – 1.7%

CIBMTR – OS 91%
N=412

EBMT – OS 95%
N=487

Registry Data between 1994 - 2005

HbSS and HbSβ° patients, overall survival at 18 years of age is estimated to be 93.9% in the Dallas cohort; NB 1% mortality at 20y in East London
SCD Survival from birth in Belgium 2008 - 2012 (N=469)

P=0.07
P=0.01 (HSCT Vs. HU)
P=0.66 (HSCT Vs. supportive rx)

Le PQ et al, Ped Blood Canc, June 2015
Barriers to Transplant for SCD

- Only 14% of families have HLA-identical sibling donor
- Only 19% have well-matched unrelated donor
- Clinicians do not refer patients because of GVHD and risk of dying
Multi-center clinical trials

- STRIDE – pilot trial of HLA-matched BMT for adults with SCD, 22 enrolled, 21 surviving free of SCD (R34 NIH funding)
- BMT-CTN 1503 (STRIDE2) comparison of HLA-matched BMT and std care in adults with SCD (U01 NIH funding)
- BMT-CTN 1507: Haplo-ID BMT in adults and children with SCD
Objective

- Determine the safety of HCT in patients aged 15-40 years with severe SCD defined as 1-year disease-free survival ≥75%

Trial period: 10/2012 – 06/2015; N = 8 centers; 19 of 23 enrolled in 01/2014 – 06/2015

N = 23 enrolled (results for N = 22)

Median age 22 years

Donors: 17 HLA-matched sibling; 5 HLA-matched URD

Results

- N = 20 alive; median follow-up: 9.7 months
- OS and EFS 95% (90% CI 76%; 99%)
Overall and Disease-free Survival

Kaplan-Meier estimation of OS by donor group for the 22 STRIDE patients

Overall survival

Months from transplantation

Patients at risk
matched-related
matched-unrelated

Matched-related
Matched-unrelated
Eligibility Criteria – BMT CTN 1503

- Age 15 – 40 years
- CNS event: stroke or deficit lasting >24 hours
- ≥ 2 episodes of acute chest syndrome (ACS) in preceding 2 years despite adequate supportive care measures
- ≥ 3 episodes of pain crisis (VOC) in preceding 2 years despite adequate supportive care measures
- ≥ 8 transfusions per year for ≥ 1 year to prevent SCD-related complications (VOC, ACS, stroke)
- Tricuspid valve regurgitant jet (TRJ) ≥ 2.7 m/sec
## Conditioning Regimen – BMT CTN 1502

<table>
<thead>
<tr>
<th>Day</th>
<th>Regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>IV busulfan 3.2 mg/kg</td>
</tr>
<tr>
<td>-7</td>
<td>IV busulfan 3.2 mg/kg, fludarabine 35 mg/m²</td>
</tr>
<tr>
<td>-6</td>
<td>IV busulfan 3.2 mg/kg, fludarabine 35 mg/m², thymoglobulin 0.5 mg/kg</td>
</tr>
<tr>
<td>-5</td>
<td>IV busulfan 3.2 mg/kg, fludarabine 35 mg/m², thymoglobulin 1 mg/kg</td>
</tr>
<tr>
<td>-4</td>
<td>IV fludarabine 35 mg/m², thymoglobulin 1.5 mg/kg</td>
</tr>
<tr>
<td>-3</td>
<td>IV fludarabine 35 mg/m², thymoglobulin 1.5 mg/kg</td>
</tr>
<tr>
<td>-2</td>
<td>IV thymoglobulin 1.5 mg/kg</td>
</tr>
<tr>
<td>-1</td>
<td>Rest</td>
</tr>
<tr>
<td>0</td>
<td>Infuse bone marrow graft</td>
</tr>
<tr>
<td>Day</td>
<td>Regimen</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>-3</td>
<td>tacrolimus through day +180; taper per institutional standards; may use cyclosporine if unable to tolerate tacrolimus</td>
</tr>
<tr>
<td>0</td>
<td>Bone marrow infusion</td>
</tr>
<tr>
<td>+1</td>
<td>IV methotrexate 7.5 mg/m²</td>
</tr>
<tr>
<td>+3</td>
<td>IV methotrexate 7.5 mg/m²</td>
</tr>
<tr>
<td>+6</td>
<td>IV methotrexate 7.5 mg/m²</td>
</tr>
<tr>
<td>+11</td>
<td>IV methotrexate 7.5 mg/m²</td>
</tr>
</tbody>
</table>
Study Design - BMT CTN 1503

Consultation with HCT physician

- Clinically Eligible; Consent
  - Register in AdvantageEDC℠

- ERC: Confirm Clinical Eligibility
  - HLA typing
    - Re-register in AdvantageEDC℠ for Biologic Assignment
      - No Donor
      - Donor

- Off study
  - Comparison Cohort
    vs.
    - HCT not Performed
    - HCT

ITT Analysis
Reduced Intensity Conditioning before HLA-Haploidentical Bone Marrow Transplantation in Patients with Symptomatic Sickle Cell Disease

BMT CTN protocol development
Michael R. DeBaun MD MPH
Mark Walters, MD
Robert Brodsky, MD
Haplo-ID BMT for SCD - Hopkins

• Conditioning regimen
  – ATG, CPM 14.5 mg/kg x 2, Flu with post-BMT CPM

• Replaced tacrolimus with sirolimus to avoid posterior reversible encephalopathy syndrome

29 consecutive patients treated
First cohort; 8/14 (57%) engrafted
Second cohort; 10/15 (67%) engrafted
Overall engraftment 62% with 97% survival

Haplo-ID BMT for SCD – St. Mary’s, London

- 12 patients (11 with SCD and 1 with thal major)
- Flu 150 mg/m$^2$, CPM 29 mg/kg, Thiotepa 10 mg/kg, rATG 4.5 mg/kg, TBI 2 Gy with HU/azathioprine 2 months before prep

11/12 have full or partial donor chimerism (92%)
1/12 had graft rejection (8%) and also died

Delafuente, et. al EBMT 2015.
Haplo-ID BMT for SCD – BMT CTN proposal June 2015

HU 30 mg/kg day -51 to -9

BMT 0.5

Day -9 -8 -7 -6 -5 -4 -3 -2 -1 0 5 10 20 30 40 365

Donor BM harvest

MMF 15 mg/kg p.o. t.i.d.
sirolimus

Cy 50 mg/kg/day

Marrow infusion

ATG

Fludarabine 30 mg/m²/day

Thiotepa 8 mg/kg x 1 day

Cy 14.5 mg/kg/day

TBI 200 cGy

Donor BM harvest

Rx

Donor

BMT

2

2 mg/kg

0.5

HU 30 mg/kg day -51 to -9

Primary Objective – Ph II study to define an optimal regimen for HaploID BMT

- Two co-primary end-points for power analysis: Overall survival (OS) and event-free survival (EFS) at 1 year
- Events for EFS: Death, severe GVHD, 1° or 2° GF with (or without) disease recurrence, or sickle complications by 1 year
Study populations

• 2 strata
  – Children <16 years of age who have had a cerebral infarction (clinically overt or silent)
  – Adults 16-45 years of age with severe symptoms

• Analyzed together for two co-primary endpoints of OS and EFS at 1 year
Clinical Trial of Stem Cell Gene Therapy for Sickle Cell Disease

- **Autologous Bone Marrow Harvest**
- **Isolate BM Stem Cells**
- **Add a Normal B-globin Gene**
  - **Condition with chemotherapy**
  - **Transplant BM Cells Back to Patient**
  - **Follow: Safety Efficacy**

Test Cells. Freeze.
Gene therapy for SCD

Table 1. Demographics and Transplantation Outcomes

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Genotype</th>
<th>BB305 Drug Product (VCN)</th>
<th>CD34+ cell dose (x10^6 per kg)</th>
<th>Day of Neutrophil Engraftment</th>
<th>Drug Product-related Adverse Events</th>
<th>Day of last pRBC transfusion</th>
<th>Last Study Visit</th>
<th>Hb amounts at last visit (g/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Subjects with β-thalassemia major</td>
<td></td>
</tr>
<tr>
<td>1201</td>
<td>18 F</td>
<td></td>
<td>β^{0}/β^{E}</td>
<td>1.5</td>
<td>8.9</td>
<td>Day +13</td>
<td>None</td>
<td>Day +10</td>
<td>12M</td>
<td>7.7/11.0</td>
</tr>
<tr>
<td>1202</td>
<td>16 M</td>
<td></td>
<td>β^{0}/β^{E}</td>
<td>2.1</td>
<td>13.6</td>
<td>Day +15</td>
<td>None</td>
<td>Day +12</td>
<td>9M</td>
<td>9.4/13.2</td>
</tr>
<tr>
<td>Subject with severe sickle cell disease</td>
<td></td>
</tr>
<tr>
<td>1204</td>
<td>13 M</td>
<td></td>
<td>β^{s}/β^{s}</td>
<td>1.2 / 1.0</td>
<td>5.6</td>
<td>Day +37</td>
<td>None</td>
<td>Day +88</td>
<td>45M</td>
<td>2.9/4.0/0.9/12.0</td>
</tr>
</tbody>
</table>

As of February 2015

* VCN, vector copy number; F=female; M= Male for gender, and months for day of last follow-up
^these authors contributed equally

* At 4.5 mos post infusion, no sickle-related events and tapering RBC txns

Cavazzana et al, ESH abstract, 2015
Summary

• HCT for SCD in children is performed rarely, and generally used only in children with significant complications.

• However, if one chose to apply HCT more broadly in the children with a suitable sibling donor, survival after HCT and with supportive care is similar.

• Studies that might expand HCT to adults and haploidentical donors are under development.