Transplant Activity Worldwide 1968-2015: increased use of both autologous and allogeneic HCT
Number of First Allogeneic HCTs in the US By Year
Reasons for Increased Use

- Better outcomes
- Expanding Indications: MDS, follicular lymphoma, myeloma
- Expanding Age Range: up to 75 for both autos and allos
- Expanding Donor Availability
Indications for HCT in the US: Recent Growth in Allotransplants for MDS, NHL and CLL

- Allogeneic (Total N~8,000)
- Autologous (Total N~12,000)

Diseases and Conditions:
- Multiple Myeloma
- NHL
- AML
- HD
- ALL
- MDS/MPD
- CLL
- Other Cancer
- CML
- Aplastic Anemia
- Other Non-Malignant Disease
Unrelated Donor HCTs Facilitated by NMDP: Dramatic Growth in Use in Patients older than 50

Source: National Marrow Donor Program/Be The Match FY 2014
Allogeneic Transplant Recipients in the US, by Donor Type

- HLA-identical Sib
- Alternative Donor
- Total
WHAT IS A SUITABLE DONOR?

• Source of hematopoietic stem cells that will provide durable engraftment, good immunologic recovery and acceptable risk of graft-versus-host disease.

• Requires donor-recipient matching for Human Leukocyte Antigens (HLA)
 – Gold standard: HLA-identical sibling
 – HLA-identical sibling available for about 30% of transplant candidates
Top 100 Caucasian A,B,C & DRB1 High-Resolution Haplotypes all have frequencies <8%; most <1%

Extensive HLA diversity

Why – ensures that the human population has protection from a wide variety of organisms

Frequencies of HLA types vary in different populations
Bone Marrow Donors Worldwide – Adult Donors

- 28,273,571 unrelated donors
 - 74 stem cell donor registries from 53 countries
Treatment-Related Mortality after Unrelated Donor HCT for Leukemia or Lymphoma Has Decreased Substantially over Past 3 Decades From ~40% to ~20%
1-Year Survival after Allogeneic HCT in the US in 2016 Center-Specific Outcomes Analysis

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Prob (95% CI)</td>
<td>N</td>
<td>Prob (95% CI)</td>
</tr>
<tr>
<td>Related donor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Related donor</td>
<td>3036</td>
<td>73% (72-75%)</td>
<td>3182</td>
</tr>
<tr>
<td>Unrelated donor</td>
<td>4248</td>
<td>65% (64-67%)</td>
<td>4675</td>
</tr>
</tbody>
</table>
Influence of HLA match on Survival After Unrelated Donor HCT

8/8 Match 7/8 Match 6/8 Match

Early Disease Stage

Intermediate Disease Stage

Advanced Disease Stage

S. Lee, et al. Blood 2007 Showed impact of single allele mismatch at A, B, C and DRB1; no difference between antigen and allele level matching
Impact of Donor Type on one-year mortality of after HCTs done in 2012-2014

<table>
<thead>
<tr>
<th>Donor Type</th>
<th>Number (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sib</td>
<td>7438</td>
</tr>
<tr>
<td>Oth match rel</td>
<td>369</td>
</tr>
<tr>
<td>8/8 MUD</td>
<td>8642</td>
</tr>
<tr>
<td>7/8 MUD</td>
<td>2000</td>
</tr>
</tbody>
</table>

- Sib N=7438
- Oth match rel N=369
- 8/8 MUD N=8642
- 7/8 MUD N=2000

[Graph showing mortality rates: 1.00, 0.93, 0.92, 0.65]
US Transplants by Race, Year and Donor Type

- Matched relative
- MUD
- MMUD
- Other

Cauc-2010: Matched relative - 2000, MUD - 3000, MMUD - 1000, Other - 0
Cauc-2015: Matched relative - 2000, MUD - 5000, MMUD - 0, Other - 0
Afric-2010: Matched relative - 500, MUD - 0, MMUD - 0, Other - 0
Afric-2015: Matched relative - 500, MUD - 0, MMUD - 0, Other - 0
Other-2010: Matched relative - 0, MUD - 0, MMUD - 0, Other - 0
Other-2015: Matched relative - 0, MUD - 0, MMUD - 0, Other - 0
7/8 and 8/8 Allele, Available-Match Rates in the Adult Donor Registry in 21 Different Populations

Gragert, NEJM 2014
Unrelated Adult Donor Transplants in the US by Graft Type: BM vs PB
BMT CTN 0201: BM vs PB
(Anasetti, et al. NEJM 2012)

• Randomized trial of unrelated donor bone marrow vs. peripheral blood for transplantation for hematologic malignancies

• Results showed similar survival, DFS, TRM

• BM had a higher rate of graft failure (9% vs. 3%, p=0.002)

• PB had a higher rate of chronic GVHD (53% vs. 41%, p=0.01)
Chronic GVHD

<table>
<thead>
<tr>
<th></th>
<th>Marrow</th>
<th>PBSC</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic Extensive</td>
<td>32%</td>
<td>48%</td>
<td><0.001</td>
</tr>
<tr>
<td>Off therapy at 2 yrs</td>
<td>57%</td>
<td>37%</td>
<td>0.026</td>
</tr>
</tbody>
</table>

P value = 0.014
Parent Trial Eligibility Criteria

• Age up to 66 years
• First transplant
• Acute and chronic leukemia, MDS, MF
• 5/6 or 6/6 match at HLA-A, B, DRB1
 – 98% 7/8 or 8/8 matched
• No active infection
Parent Trial Study Design

• Four myeloablative/RIC regimens allowed
 – Cyclophosphamide/TBI
 – Cyclophosphamide/Busulfan
 – Fludarabine/Busulfan/ATG
 – Fludarabine/Melphalan

• Two GVHD prophylaxis regimens
 – Cyclosporine/methotrexate +/- others
 – Tacrolimus/methotrexate +/- others
Overall Survival with 5 Years Minimum Follow-up

Median FU 73 months
P=0.84

Bone marrow
Peripheral Blood Stem Cells
Five year QOL data with BM vs PB (76% Response Rate)

<table>
<thead>
<tr>
<th>QOL scale</th>
<th>Bone marrow (n=102)</th>
<th>Peripheral blood (n=93)</th>
<th>P value</th>
<th>Difference between BM and PB (95% CI)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACT-BMT TOI (↑ better)</td>
<td>76.7 +/- 1.6</td>
<td>70.5 +/- 1.9</td>
<td>0.014</td>
<td>6.2 (1.3-11.1)</td>
</tr>
<tr>
<td>Mean +/- SE</td>
<td>(n=79)</td>
<td>(n=69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHI – Psychological well-being (↑ better)</td>
<td>78.9 +/- 1.7</td>
<td>72.2 +/- 1.9</td>
<td>0.011</td>
<td>6.7 (1.6-11.8)</td>
</tr>
<tr>
<td>Mean +/- SE</td>
<td>(n=80)</td>
<td>(n=72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHI-Psychological Distress (↓ better)</td>
<td>16.0 +/- 1.3</td>
<td>19.0 +/- 1.5</td>
<td>0.128</td>
<td>-3.0 (-6.8,0.9)</td>
</tr>
<tr>
<td>Mean +/- SE</td>
<td>(n=80)</td>
<td>(n=71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic GVHD symptoms (↓ better)</td>
<td>13.1 +/- 1.5</td>
<td>19.3 +/- 1.6</td>
<td>0.004</td>
<td>-6.3 (-10.5, -2.0)</td>
</tr>
<tr>
<td>Mean +/- SE</td>
<td>(n=80)</td>
<td>(n=72)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FACT-BMT TOI, Functional Assessment of Cancer Therapy, Bone Marrow Transplant Trial Outcome Index; MHI, Mental Health Inventory; GVHD, Graft-versus-Host Disease; SE, standard error

¹0.5 x STD

²Adjusted for enrollment values and missing data using inverse probability weighting using significant clinical characteristics
Return to work

- Likelihood of return to full or part time work outside the home was higher for BM
 - RR 1.5, 95% CI 1.2-2.0, p=0.002
 - Adjusted for work status before transplant
 - Missing data imputed based on graft source, disease risk, and age
Conclusions

• At 5 years after HCT, recipients of unrelated donor BM, compared with PB, have:
 – Better psychological well-being
 – Less burdensome chronic GVHD symptoms
 – Are 50% more likely to go back to work
 – Similar survival, relapse, TRM

• No outcome for which PB was better

• PB is still used for >70% of unrelated donor transplants – cause for concern?
Unrelated Adult Donor Transplants in the US by Graft Type: Percent BM vs PB

- Bone Marrow
- Peripheral Blood

Other HLA/Donor Characteristics Associated with Outcome

• Low-expression HLA alleles (DQ, DP, DRB3,4,5)
 – Permissive versus non-permissive DP mismatches
 – Multiple mismatches

• Donor age – age >46 about equivalent to a single locus mismatch

• Non-HLA genomics – KIR Phenotype

• Others – CMV, sex-match, ABO-match
Donor Availability

- HLA-matched relative 25-30%
- Unrelated donor 40-90%
 - Optimally selected* 10-60%

*HLA-matched, permissive DP mismatch, age <30, (ABO, CMV, sex)
Patients Without an Adult Donor May be Helped by Banked Umbilical Cord Blood

Advantages:

- Immediately available (important for patients with rapidly progressive diseases)
- No risk to donor
- Allows more HLA-mismatch with lower risk of GVHD
Bone Marrow Donors Worldwide – Cord Blood Units

• 28,273,571 unrelated donors
• 697,698 CBU
• 74 stem cell donor registries from 53 countries
• 49 cord blood banks from 33 countries
Cord Blood Transplantation

• Multiple studies from individual centers, Eurocord, the NYBC, EBMT and CIBMTR document that Umbilical Cord Blood cells
 – Can establish durable hematopoiesis
 – Have potent graft-versus-tumor effects
 – Can lead to successful transplant outcomes in a variety of malignant and non-malignant diseases in adults and children

• Outcomes of UCB transplants have improved over time
Leukemia-free Survival in Children – depends on HLA Match and Cell Dose: Better, the Same or Slightly Worse than Matched Bone Marrow (Eapen, Lancet, 2007)

- CB 1-Ag MM high (n=157), 41%
- BM matched (n=369), 40%
- CB 1-Ag MM low (n=44), 36%
- CB 2-Ag MM (n=267), 33%
- BM MM (n=123), 30%
Leukemia-free Survival In Adults
Transplantation in Remission: Slightly worse than Matched Marrow of Peripheral Blood

- 8/8 BM, 52%
- 7/8 BM, 41%
- 8/8 PBPC, 50%
- 7/8 PBPC 39%
- 4-6/6 UCB, 44%

Eapen et al; Lancet Oncol 2010
Leukemia-free Survival in Adults: Transplantation Not in Remission: Similar to Matched or Mismatched BM or PB

Eapen et al; Lancet Oncol 2010

Note very low TRM with 8/8 match

Likely to change the paradigm for cord selection

P < 0.001

Years

Incidence, %
Lesser (intermediate resolution A, B; high resolution DRB1) vs. Allele-level HLA-match

<table>
<thead>
<tr>
<th>Loci mismatched using usual typing</th>
<th>Loci mismatched using high resolution typing for A, B, C, DRB1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table represents the percentage of loci mismatched using high resolution typing compared to usual typing. The values indicate the mismatch percentages for different numbers of loci mismatches.
Cord Blood Availability in the US

<table>
<thead>
<tr>
<th></th>
<th>Likelihood of suitable unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8/8</td>
</tr>
<tr>
<td>African American</td>
<td>5%</td>
</tr>
<tr>
<td>South East Asian</td>
<td>7%</td>
</tr>
<tr>
<td>Alaskan Native</td>
<td>11%</td>
</tr>
<tr>
<td>Native American Indian</td>
<td>10%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>36%</td>
</tr>
</tbody>
</table>
Cell Dose

• Major limitation to Cord Blood Transplantation is the small number of cells in each unit
 – Slow hematopoietic recovery
 – Slow immune recovery
 – Graft failure

• Strategies:
 – Selection of large units
 – Double cord transplantation (expensive)
 – Expansion and homing techniques (in development, often requires two units)
The “New” Alternative – Haploidentical

- Europe: haplo-transplants using T-depleted peripheral blood grafts long used for a small but important proportion of transplants
- China: intensive immune suppression allows successful haplo-transplantation
- US: very few haplo-transplants until last 6 years
 - No approved CD34 selection or T-depletion device
 - Hopkins approach using post-transplant cyclophosphamide increased interest
 - Technically simple, costs similar to HLA-identical sib transplantation
BMT CTN 0603 and 0604: Parallel Single Arm Studies of Haplo and CB Transplants

- Age ≤ 70
- Diseases
 - Leukemia: high risk, in remission
 - Lymphoma
 - Hodgkin, mantle cell, or large cell: chemosensitive relapse, not eligible for autologous SCT
 - Follicular or marginal zone: multiply relapsed
- Adequate organ function, performance score >60%
- N=50 in each trial
- Primary endpoint: 6-month survival
Comparisons of clinical outcomes: CB vs Haplo (BMT CTN 0603/0604)

Overall survival

- Months Post Transplant: 0, 12, 24, 36
- Probability, %:
 - Months 0: Haplo: 84%, Cord: 74%
 - Months 12: Haplo: 68%, Cord: 52%
 - Months 24: Haplo: 54%, Cord: 46%
 - Months 36: Haplo: 54%, Cord: 39%

Progression-free survival

- Months Post Transplant: 0, 12, 24, 36
- Probability, %:
 - Months 0: Haplo: 35%, Cord: 36%
 - Months 12: Haplo: 40%, Cord: 38%
 - Months 24: Haplo: 54%, Cord: 46%
 - Months 36: Haplo: 54%, Cord: 39%
BMT CTN 1101: Randomized Comparison of Haplo and Double Cord HCT

• Primary: 2 year Progression-free survival
• Secondary: Engraftment, hematopoietic recovery, GVHD, TRM, relapse/progression, infections, hospitalizations, health-related quality of life

• Planned ancillary studies:
 • Immune reconstitution
 • Cost effectiveness
 • 267 of 410 patients accrued to date
Haploidentical Transplantations for Hematologic Malignancy

Years of 0603/0604 trial

Year 0603/0604 paper was published
Distribution of Graft Sources: 2015 vs 2010

- HLA-ident sib
- Matched unrelated
- Mism unrelated
- Haploident
- Cord

2010 vs 2015 comparison graph showing the distribution of graft sources.
Distribution of Alternative (not an HLA-matched adult donor) Graft Sources - 1

2010 2015

- Mism unrelated
- Haploidentical
- Cord

CIBMTR®
CENTER FOR INTERNATIONAL BLOOD & MARROW TRANSPLANT RESEARCH
Distribution of Alternative (not an HLA-matched adult donor) Graft Sources - 2

- Mism unrelated
- Haploidentical
- Single Cord
- Double Cord

2010 vs 2015
Distribution of Alternative (not an HLA-matched adult donor) Graft Sources - 3

- Mism unrelated
- Haploidentical
- Cord
- Total

2010: Blue bars, 2015: Green bars.
Change From 2010 to 2015

- Mism unrelated: 45
- Haploident: 332
- Cord: -115
- Total: 303
US Transplants by Race, Year and Donor Type (2)
US Transplants in non-Caucasians by Year and Donor Type (2)
Overall Survival, Adjusted for Age, Disease Risk, Secondary AML (Ciurea, Blood, 2015)

Myeloablative
- 1245 MUD/104 Haplo
 - MUD 50% (47-53)
 - HAPLO 45% (36-54)
 - HR 0.93 (95% CI 0.70 – 1.22), p=0.58

Reduced Intensity
- 737 MUD/88 Haplo
 - HAPLO 46% (35-56)
 - MUD 44% (40-47)
 - HR 1.06 (95% CI 0.79 – 1.43), p=0.70
Limitation of this Analysis - POWER

COMPARISONS OF 3-Year SURVIVAL

<table>
<thead>
<tr>
<th></th>
<th>Myeloablative: 1245 MUD/104 Haplo</th>
<th>Reduced Intensity: 737 MUD/88 Haplo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Point Estimate</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>Matched Unrelated</td>
<td>50%</td>
<td>47%</td>
</tr>
<tr>
<td>Haploidentical</td>
<td>45%</td>
<td>36%</td>
</tr>
</tbody>
</table>
Impact of Donor Type on one-year mortality after HCTs done in 2012-2014

Matched related or unrelated

6/6 CB; 7/8 unrelated; haploidentical

Mismatched CB

- Sib N=7438
- Single 6/6 CB N=182
- Multiple 5/6 CB N=477
- Single 4-5/6 CB N=728
- Multiple 4/6 CB N=774
- Oth match rel N=369
- Haplo N=1350
- 8/8 MUD N=8642
- 7/8 MUD N=2000
What Do We Know About Haplos with Post-tx Cyclophosphamide?

- Haploidentical HCT can be performed with low GVHD and low early TRM and acceptable 2-3 year overall mortality, when used with postCy
- Haploidentical HCT is increasingly used, predominantly for adult patients who do not have an HLA-matched adult donor – and some who do
Some Unknowns About Haplos with Post-tx Cyclophosphamide

• Long-term control of malignancy
• Engraftment in non-malignant diseases
• Optimal graft type (PB or BM) or conditioning regimen
• Suitability of Older Donors
 – More graft failure
 – Clonal hematopoiesis more common with older donors – uncertain significance
Some Other Important Unknowns About Post-tx Cyclophosphamide

- Roles in HLA-mismatched unrelated donor transplantation
- Role in HLA-matched related and unrelated donor transplantation
- Viral immunity
- Are the same donor and recipient risk factors important for TRM, relapse and survival
US National Trials Addressing Some of These Issues

- BMT CTN 1101: Haplo vs Cord with **reduced intensity conditioning**
- BMT CTN 1203: PostCy as GVHD prophylaxis with **matched donors and reduced intensity conditioning**
- BMT CTN 1301: PostCy as GVHD prophylaxis with **matched donors and myeloablative conditioning**
- BMT CTN 1502: Haplo with PostCy and UCB for **aplastic anemia**
- BMT CTN 1507: Haplo with PostCy in **Sickle Cell Disease**
- RCI BMT MMUD: PostCy as GVHD prophylaxis with **multiply mismatched unrelated donors**
Allogeneic HCTs for all Standard Indications
Conclusions

• Few patients lack an acceptable donor
• All donors (8/8, 7/8 adult, haplo, cord) produce outcomes that, if not identical, are in same range
 – Maximum differences in survival, compared to 8/8 adult donor, are in the range of 10%-15%
• Donor availability cannot fully account for differences in access to HCT in diverse ethnic and racial groups