Trends in Graft Sources for Allogeneic Hematopoietic Stem Cell Transplantation (HCT): Everyone Has a Donor

Mary M. Horowitz, MD, MS CIBMTR, Medical College of Wisconsin September, 2016

A research collaboration between the National Marrow Donor Program (NMDP)/Be The Match and the Medical College of Wisconsin

Transplant Activity Worldwide1968-2015: increased use of both autologous and allogeneic HCT

Number of First Allogeneic HCTs in the US By Year

CIBMTR, unpublished data ³

Reasons for Increased Use

- Better outcomes
- Expanding Indications: MDS, follicular lymphoma, myeloma
- Expanding Age Range: up to 75 for both autos and allos
- Expanding Donor Availability

Indications for HCT in the US: Recent Growth in Allotransplants for MDS, NHL and CLL

Allogeneic (Total N~8,000)
Autologous (Total N~12,000)

Unrelated Donor HCTs Facilitated by NMDP: Dramatic Growth in Use in Patients older than 50

Allogeneic Transplant Recipients in the US, by Donor Type

WHAT IS A SUITABLE DONOR?

- Source of hematopoietic stem cells that will provide durable engraftment, good immunologic recovery and acceptable risk of graft-versus-host disease.
- Requires donor-recipient matching for Human Leukocyte Antigens (HLA)
 - Gold standard: HLA-identical sibling
 - HLA-identical sibling available for about 30% of transplant candidates

Top 100 Caucasian A,B,C & DRB1 High-Resolution Haplotypes all have frequencies <8%; most <1%

& MARROW TRANSPI ANT RESEARCH

Bone Marrow Donors Worldwide – Adult Donors

- 28,273,571 unrelated donors
 - 74 stem cell donor registries from 53 countries

Treatment-Related Mortality after Unrelated Donor HCT for Leukemia or Lymphoma Has Decreased Substantially over Past 3 Decades From ~40% to ~20%

1-Year Survival after Allogeneic HCT in the US in 2016 Center-Specific Outcomes Analysis

	2012		2013		2014	
	Ν	Prob (95% CI)	Ν	Prob (95% CI)	Ν	Prob (95% CI)
Related donor	3036	73% (72-75%)	3182	72% (70-73%)	3262	73% (71-74%)
Unrelated donor	4248	65% (64-67%)	4675	67% (66-68%)	4601	66% (65-68%)

Influence of HLA match on Survival After Unrelated Donor HCT

S. Lee, et al. Blood 2007 Showed impact of single allele mismatch at A, B, C and DRB1; no difference CIBMTR between antigen and allele level matching

Impact of Donor Type on one-year mortality of after HCTs done in 2012-2014

■ Sib N=7438 ■ Oth match rel N=369 ■ 8/8 MUD N=8642 ■ 7/8 MUD N=2000

US Transplants by Race, Year and Donor Type 7000 Matched relative MUD MMUD Other

CENTER FOR INTERNATIONAL BLOOD

& MARROW TRANSPLANT RESEARCH

US Transplants in non-Caucasians by Year and Donor Type

& MARROW TRANSPLANT RESEARCH

7/8 and 8/8 Allele, Available-Match Rates in the Adult Donor Registry in 21 Different Populations

Unrelated Adult Donor Transplants in the US by Graft Type: BM vs PB

Bone Marrow
Peripheral Blood

BMT CTN 0201: BM vs PB (Anasetti, et al. NEJM 2012)

- Randomized trial of unrelated donor bone marrow vs. peripheral blood for transplantation for hematologic malignancies
- Results showed similar survival, DFS, TRM
- BM had a higher rate of graft failure (9% vs. 3%, p=0.002)
- PB had a higher rate of chronic GVHD (53% vs. 41%, p=0.01)

Chronic GVHD

Parent Trial Eligibility Criteria

- Age up to 66 years
- First transplant
- Acute and chronic leukemia, MDS, MF
- 5/6 or 6/6 match at HLA-A, B, DRB1
 98% 7/8 or 8/8 matched
- No active infection

Parent Trial Study Design

- Four myeloablative/RIC regimens allowed
 - Cyclophosphamide/TBI
 - Cyclophosphamie/Busulfan
 - Fludarabine/Busulfan/ATG
 - Fludarabine/Melphalan
- Two GVHD prophylaxis regimens
 - Cyclosporine/methotrexate +/- others
 - Tacrolimus/methotrexate +/- others

Overall Survival with 5 Years Minimum Follow-up

Five year QOL data with BM vs PB (76% Response Rate)

QOL scale	Bone marrow (n=102)	Peripheral blood (n=93)	P value	Difference between BM and PB (95% CI) ²
FACT-BMT TOI (个 better) Mean +/- SE	76.7 +/- 1.6 (n=79)	70.5 +/- 1.9 (n=69)	0.014	6.2 (1.3-11.1)
<pre>MHI – Psychological well-being (↑ better) Mean +/- SE</pre>	78.9 +/- 1.7 (n=80)	72.2 +/- 1.9 (n=72)	0.011	6.7 (1.6-11.8)
MHI-Psychological Distress (↓ better) Mean +/- SE	16.0 +/- 1.3 (n=80)	19.0 +/- 1.5 (n=71)	0.128	-3.0 (-6.8,0.9)
Chronic GVHD symptoms (√better) Mean +/- SE	13.1 +/- 1.5 (n=80)	19.3 +/- 1.6 (n=72)	0.004	-6.3 (-10.5, -2.0)

FACT-BMT TOI, Functional Assessment of Cancer Therapy, Bone Marrow Transplant Trial Outcome Index; MHI, Mental Health Inventory; GVHD, Graft-versus-Host Disease; SE, standard error ¹0.5 x STD

²Adjusted for enrollment values and missing data using inverse probability weighting using significant clinical characteristics

Return to work

- Likelihood of return to full or part time work outside the home was higher for BM
 - RR 1.5, 95% CI 1.2-2.0, p=0.002
 - Adjusted for work status before transplant
 - Missing data imputed based on graft source, disease risk, and age

Conclusions

- At 5 years after HCT, recipients of unrelated donor BM, compared with PB, have:
 - Better psychological well-being
 - Less burdensome chronic GVHD symptoms
 - Are 50% more likely to go back to work
 - Similar survival, relapse, TRM
- No outcome for which PB was better
- PB is still used for >70% of unrelated donor transplants – cause for concern?

Unrelated Adult Donor Transplants in the US by Graft Type: Percent BM vs PB

Other HLA/Donor Characteristics Associated with Outcome

- Low-expression HLA alleles (DQ, DP, DRB3,4,5)
 - Permissive versus non-permissive DP mismatches
 - Multiple mismatches
- Donor age age >46 about equivalent to a single locus mismatch
- Non-HLA genomics KIR Phenotype
- Others CMV, sex-match, ABO-match

Donor Availability

- HLA-matched relative 25-30%
- Unrelated donor 40-90%
 –Optimally selected* 10-60%
 *HLA-matched, permissive DP mismatch, age <30, (ABO, CMV, sex)

Patients Without an Adult Donor May be Helped by Banked Umbilical Cord Blood

Advantages:

- Immediately available (important for patients with rapidly progressive diseases)
- No risk to donor
- Allows more HLA-mismatch with lower risk of GVHD

Bone Marrow Donors Worldwide – Cord Blood Units

- 28,273,571 unrelated donors
- 697,698 CBU
- 74 stem cell donor registries from 53 countries
- 49 cord blood banks from 33 countries

Cord Blood Transplantation

- Multiple studies from individual centers, Eurocord, the NYBC, EBMT and CIBMTR document that Umbilical Cord Blood cells
 - Can establish durable hematopoiesis
 - Have potent graft-versus-tumor effects
 - Can lead to successful transplant outcomes in a variety of malignant and non-malignant diseases in adults and children
- Outcomes of UCB transplants have improved over time

Leukemia-free Survival in Children – depends on HLA Match and Cell Dose: Better, the Same or Slightly Worse than Matched Bone Marrow (Eapen, Lancet, 2007)

🛦 New York Blood Center

Leukemia-free Survival In Adults

Transplantation in Remission: Slightly worse than Matched Marrow of Peripheral Blood

Leukemia-free Survival in Adults: Transplantation Not in Remission: Similar to Matched or

Mismatched BM or PB

Effect of Allele-level Matching at A, B, C, DRB1 on Transplant-related Mortality after Cord Blood Transplantation (Eapen, Blood, 2014)

Lesser (intermediate resolution A, B; high resolution DRB1) vs. Allele-level HLA-match

Loci mis- matched	Loci r	Loci mismatched using high resolution typing for A, B, C, DRB1					
using usual typing	5	4	3	2	1	0	
2	11%	31%	49%	10%			
1	1%	8%	22%	44%	25%		
0			4%	18%	24%	54%	

Cord Blood Availability in the US

	Likelihood of suitable unit			
	8/8	7/8	6/8	
African American	5%	33%	80%	
South East Asian	7%	33%	75%	
Alaskan Native	11%	42%	83%	
Native American Indian	10%	44%	85%	
Caucasian	36%	81%	98%	

Cell Dose

- Major limitation to Cord Blood Transplantation is the small number of cells in each unit
 - Slow hematopoietic recovery
 - Slow immune recovery
 - Graft failure
- Strategies:
 - Selection of large units
 - Double cord transplantation (expensive)
 - Expansion and homing techniques (in development, often requires two units)

The "New" Alternative – Haploidentical

- Europe: haplo-transplants using T-depleted peripheral blood grafts long used for a small but important proportion of transplants
- China: intensive immune suppression allows successful haplo-transplantation
- US: very few haplo-transplants until last 6 years
 - No approved CD34 selection or T-depletion device
 - Hopkins approach using post-transplant cyclophosphamide increased interest
 - Technically simple, costs similar to HLA-identical sib transplantation

BMT CTN 0603 and 0604: Parallel Single Arm Studies of Haplo and CB Transplants

- Age ≤ 70
- Diseases
 - Leukemia: high risk, in remission
 - Lymphoma
 - Hodgkin, mantle cell, or large cell: chemosensitive relapse, not eligible for autologous SCT
 - Follicular or marginal zone: multiply relapsed
- Adequate organ function, performance score >60%
- N=50 in each trial
- Primary endpoint: 6-month survival

BMT CTN 1101: Randomized Comparison of Haplo and Double Cord HCT

- Primary: 2 year Progression-free survival
- Secondary: Engraftment, hematopoietic recovery, GVHD, TRM, relapse/progression, infections, hospitalizations, health-related quality of life
- Planned ancillary studies:
- Immune reconstitution
- Cost effectiveness
- 267 of 410 patients accrued to date

Haploidentical Transplantations for Hematologic Malignancy

Distribution of Graft Sources: 2015 vs 2010

CENTER FOR INTERNATIONAL BLOOD

& MARROW TRANSPLANT RESEARCH

Distribution of Alternative (not an HLAmatched adult donor) Graft Sources - 1

2010 2015

& MARROW TRANSPLANT RESEARCH

Distribution of Alternative (not an HLAmatched adult donor) Graft Sources - 2

2010 2015

& MARROW TRANSPI ANT RESEARCH

Distribution of Alternative (not an HLAmatched adult donor) Graft Sources - 3

2010 2015

& MARROW TRANSPLANT RESEARCH

Change From 2010 to 2015

US Transplants by Race, Year and Donor Type (2)

US Transplants in non-Caucasians by Year and Donor Type (2)

& MARROW TRANSPLANT RESEARCH

Overall Survival, Adjusted for Age, Disease Risk, Secondary AML (Ciurea, Blood, 2015)

Limitation of this Analysis - POWER

	Myeloablative: 1245 MUD/104 Haplo			Reduced Intensity: 737 MUD/88 Haplo		
	Point Estimate	Lower Bound	Upper Bound	Point Estimate	Lower Bound	Upper Bound
Matched Unrelated	50%	47%	53%	44%	40%	47%
Haploidentical	45%	36%	54%	46%	35%	56%

Impact of Donor Type on one-year mortality after HCTs done in 2012-2014

What Do We Know About Haplos with Post-tx Cyclophosphamide?

- Haploidentical HCT can be performed with low GVHD and low early TRM and acceptable 2-3 year overall mortality, when used with postCy
- Haploidentical HCT is increasingly used, predominantly for adult patients who do not have an HLA-matched adult donor – and some who do

Some Unknowns About Haplos with Post-tx Cyclophosphamide

- Long-term control of malignancy
- Engraftment in non-malignant diseases
- Optimal graft type (PB or BM) or conditioning regimen
- Suitability of Older Donors
 - More graft failure
 - Clonal hematopoiesis more common with older donors – uncertain significance

Some Other Important Unknowns About Post-tx Cyclophosphamide

- Roles in HLA-mismatched unrelated donor transplantation
- Role in HLA-matched related and unrelated donor transplantation
- Viral immunity
- Are the same donor and recipient risk factors important for TRM, relapse and survival

US National Trials Addressing Some of These Issues

- BMT CTN 1101: Haplo vs Cord with reduced intensity conditioning
- BMT CTN 1203: PostCy as GVHD prophylaxis with matched donors and reduced intensity conditioning
- BMT CTN 1301: PostCy as GVHD prophylaxis with matched donors and myeloablative conditioning
- BMT CTN 1502: Haplo with PostCy and UCB for aplastic anemia
- BMT CTN 1507: Haplo with PostCy in Sickle Cell Disease
- RCI BMT MMUD: PostCy as GVHD prophylaxis with multiply mismatched unrelated donors

Allogeneic HCTs for all Standard Indications

& MARROW TRANSPLANT RESEARCH

Conclusions

- Few patients lack an acceptable donor
- All donors (8/8, 7/8 adult, haplo, cord) produce outcomes that, if not identical, are in same range
 - Maximum differences in survival, compared to 8/8 adult donor, are in the range of 10%-15%
- Donor availability cannot fully account for differences in access to HCT in diverse ethnic and racial groups

